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Chaos and the dynamics of biological populations

By R.M.May, F.R.S.

Department of Biology, Princeton University, Princeton,
New Jersey 08544, U.S.A.

As first emphasized in the early 1970s, the nonlinearities that are inherent
in simple models for the regulation of plant and animal populations can
lead to chaotic dynamics. This review deals with a variety of instances
where chaotic phenomena can arise, particularly in interactions between
prey and predators (including hosts and pathogens, hosts and parasitic
insects, and harvested populations). Some of the complications in' dis-
entangling deterministic chaos from environmental noise will be dis-
cussed: The combination of population biology with population genetics
leads to an even richer assortment of nonlinear phenomena and to the
suggestion that many genetic polymorphisms may vary cyclically or
chaotically (rather than being steady, as usually is assumed implicitly).

I argue that complex dynamics — including chaos — is likely to be per-
vasive in population biology and population genetics, even in seemingly
simple situations. But superimposed environmental noise, in hetero-
geneous natural settings, will usually complicate the dynamics, making
it unlikely that population data will exhibit elegant properties (such as
universalities in period doubling) associated with the underlying maps.
The existence of chaotic régimes of dynamical behaviour can, however,
invalidate standard techniques for analysing population data to reveal
density-dependent mechanisms; this, I believe, may currently be the
most significant implication of dynamical chaos for population biology.

1. INTRODUCTION

A central task for population biologists is to disentangle, from the superimposed
fluctuations caused by environmental noise and other chance events, the under-
lying mechanisms that regulate natural populations so that no one species of
plant or animal increases without bound. Such studies lead us to consider simple
equations that might describe the dynamics of natural populations if environ-
mental noise and heterogeneity could be stripped away. A clear understanding of
the dynamics of these simple and deterministic, but nonlinear, models then serves
as a point of departure for evaluating the effects of various kinds of complications
associated with environmental unpredictability and heterogeneity.

As is by now well known, such investigations in the early 1970s led to the
realization that the simplest nonlinear models for populations with discrete, non-
overlapping generations (first-order difference equa'tions with one critical point)
could exhibit a surprising array of dynamical behaviour (May 1974, 1976; Li &
Yorke 1975; May & Oster 1976). Subsequent work showed that even richer
dynamical behaviour could be generated by simple, deterministic equations for
single populations with discrete but overlapping generations (higher-order
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28 R. M. May

difference equations), for single populations with continuous growth where
regulatory effects contain time lags (time-delayed differential equations), and for
two or more interacting populations. The dynamical properties of these models
have been the subject of several recent reviews (Rogers 1981 ; Olsen & Degn 1985;
Kloeden & Mees 1985 ; Lauwerier 1986a,b; May 1983, 1986). Section 2 therefore
does not attempt a comprehensive review, but rather is a guide to the existing
literature with selective emphasis on a few points that are new or are not widely
appreciated.

‘Given that chaos arises in the simplest equations propounded by ‘muddy-boots’
ecologists as natural descriptions of the underlying dynamics of their insect, fish,
pathogen or other populations, the question of to what extent are chaotic
dynamics actually observed arises. Section 3 summarizes recent studies of this
question. My conclusion is that, in controlled laboratory settings, the array of
dynamics from stable points, to stable cycles, to chaos can be seen, but that even
in these artificial situations one cannot hope to see fine details of period doubling
and the like (as one arguably can in some physical contexts, such as the onset of
turbulence). In the natural world, the role of nonlinear phenomena (including
possibly chaos) in the dynamics of many infectious diseases of humans and other
animals is being understood in an increasingly explicit way. But for most natural
populations, I believe environmental noise and other complications make it dif-
ficult to find examples of time series that show period doubling, intermittency,
transitions to chaos, and other dynamical features that are clearly exhibited in
some physiological and biochemical systems.

The fact that chaotic dynamics can arise from simple, density-dependent
mechanisms does, however, have profoundly important implications for the way
population biologists analyse data. Most existing work is based, usually implicitly,
on the assumption that if density-dependent ‘signals’ could be dissociated from
the confounding environmental noise, the population would be regulated to a
steady, constant value. But if deterministic nonlinearities actually give chaotic
time series which are effectively indistinguishable from stochastic fluctuations, the
task of uncovering the regulatory signal can be much more complex. Some current
work on this subject is reviewed in §4.

Ultimately, environmental noise does not act on populations as such, but on
their constituent individuals. Thus we really need to derive deterministic models
for the dynamics of populations from assumptions about the behaviour of
individuals, so that the parameters in the population model derive from the
biology of individuals. The effects of environmental noise can then be introduced in
the proper way, through their effects on individuals. When this is done for insect
populations in patchy environments, preliminary studies show that the interplay
among nonlinear dynamics (giving rise possibly to cycles and chaos), spatial
heterogeneity and environmental noise can invalidate standard techniques for
detecting density-dependent mechanisms in natural populations. This work is also
reviewed in §4, and it may represent the most significant implication that non-
linear dynamics holds for population biologists.

Section 5 extends the discussion to the dynamics of gene frequencies in popu-
lations where fitness functions are derived from ecological considerations (and
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thus can be frequency- or density-dependent). Again §5 is a brief outline of existing
work. The conclusion is that the combination of population biology with popu-
lation genetics can lead to a very rich assortment of nonlinear phenomena,
with the implication that many genetic polymorphisms may vary cyclically or
chaotically. Section 6 re-emphasizes the main messages in this review.

2. CHAOTIC DYNAMICS IN SIMPLE ECOLOGICAL MODELS
2.1. One-dimensional maps (single populations)

Most readers will by now be familiar with the dynamical behaviour exhibited by

the quadratic map,
Tyy = 0, (1 —,). (2.1)

If 3 > a > 1, the fixed point at * = 1 —1/a is an attractor, and the system settles
to the stable point made familiar by countless discussions in elementary mathe-
matics courses. At @ = 3 the system bifurcates, to give a cycle of period 2, which
isstable for 1+ /6 > a > 3. Asa increases beyond this, successive bifurcations give
rise to a cascade of period doublings, producing cycles of periods 2, 4, 8, 16, ..., 2"
for a in the range 3.570.. > a > 3. Beyond the point of accumulation of this
cascade, 4 >a > 3.570.., there lies an apparently chaotic régime, in which
trajectories look like the sample functions of random processes. In detail, the
apparently chaotic régime comprises infinitely many tiny windows of a-values, in
which basic cycles of period k£ are born stable (accompanied by unstable twins),
cascade down through their period-doublings to give stable harmonics of periods
k x 2" and become unstable ; this sequence of events recapitulates the process seen
more clearly for the basic fixed point of period 1. The details of these processes,
and catalogues of the various basic k-cycles, have been given independently several
times and are reviewed by May (1976), Collet & Eckmann (1980), and others.
The nature of the chaotic régime for such ‘maps of the interval’ is often
misunderstood. In detail, the chaotic régime is largely a mosaic of stable cycles,
one giving way to another with kaleidoscopic rapidity as a increases. But for
essentially all practical applications, the chaotic region has the effectively random
character that superficial inspection or numerical simulations suggest. This point
is exemplified by the ‘Lyapunov exponent’ that is often computed as an index
of chaotic behaviour. These exponents are analogous to the eigenvalues that
characterize the stability properties of simpler systems. They are typically
calculated by iterating difference equations, such as (2.1), and calculating the
geometric average value of the slope of the map at each iterate: that is, for the
i
difference equation 20 = F(3), 2.2)

the Liyapunov exponent A is given by

InA = lim {1 % In (dF(xt)/dx)}‘ (2.3)

n—->00 t=0

For generically quadratic maps, there are unique attractors for most values of a
in the chaotic régime. Therefore this calculation, if carried out exactly, or if the
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iterations are carried on long enough, will give values of A less then unity (InA
negative); an exact plot of the Lyapunov exponent for increasing a in the chaotic
régime would be a hopeless jumble of ink lines, connecting the negative values
(which arise for most values of a) to the set of positive values (which do have
positive measure). But if only several tens of thousands of iterates are taken in
numerical studies, InA is typically found to be positive in the chaotic régime
(because transients take enormous times to die away for the very high-order cycles
that predominate). Although inexact in a strictly mathematical sense, the
‘chaotic’ impression (In A > 0) given by these numerical studies is probably more
accurate for practical application than exact calculations (InA < 0) would be!
Thus the work on Lyapunov exponents reviewed by Olsen & Degn (1985) may be
mathematically inaccurate (as pointed out by Gambaudo & Tresser (1983) and
Kloeden & Mees (1985)), but it is usually correct in spirit.

The properties of exhibiting a stable point, or a cascade of period-doublings, or
apparently chaotic dynamics are not peculiar to the quadratic map of (2.1), but
are general to essentially all maps with one hump. Table 1 catalogues several such

TABLE 1. SOME FIRST-ORDER DIFFERENCE EQUATIONS, Z,,, = F(z,), TAKEN FROM
THE BIOLOGICAL LITERATURE, WHICH CAN EXHIBIT CHAOTIC DYNAMICS

F() source
z exp[r(1 —z)] Moran (1950), Ricker (1954), Macfadyen (1963),
Cook (1965), Pacala & Silander (1985)
Z1+r(l—2x)] Maynard Smith (1986), May (1972),
Li & Yorke (1975)
Az, ifx < 1 Haldane (1953), Varley et al. (1973)
Axtt ifx>1 and references therein
Az/(1 +ax®) Maynard Smith (1974), Bellows (1981)
Az(1l+ax)™ Hassell (1974)
z[1/(a+bx)— o] Utida (1957)
ALz ife<d Williamson (1974), with A, > 1, A_<1
Az, ifx>1
Ax[1—1(x)] May (1985), with I(x) given by 1—1 = exp (—Ix)
Aze® Z;";o.x—_ Pacala & Silander (1985), Crawley & May (1987)
2114+ oz)
Az .
e Watkinson (1980)
(14+ax)’+cx

first-order difference equations that have been proposed, in various theoretical
and empirical contexts, as descriptions of biological populations. The basic mech-
anisms producing this array of behaviour in one-dimensional maps can, more-
over, be understood in a very simple way, by using geometrical, combinatorial, or
other approaches (May 1976). In particular, the generic process whereby period-
doubling occurs, with a stable orbit of period k x 2"*! appearing as the basic k-
cycle harmonic of period k x 2" becomes unstable, can be understood by a simple
geometrical argument. This argument also gives an analytical estimate of the
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Feigenbaum ratio as § = 2(1/2+ 1) & 4.83 (obtained by approximating the period-
kx 2™ map by a cubic in the neighbourhood of the fixed points of period k& x 2"
at their transition from stability to instability: May & Oster (1980)). This is in
good agreement (up to terms of relative order 67%) with the exact numerical
computation § = 4.669....

The above remarks apply to maps that are generically quadratic in the sense
that they have negative Schwarzian derivative (Singer 1978). In the absence of
this restriction, we could have one-hump maps with, for example, a narrow range
of attraction around the fixed point, but with the rest of the map generating very
long chaotic transients which perpetuated until, by chance, an iterate fell within
the range of attraction and settled to the fixed point. Such a system essentially has
two different states, one stable state and one labile state (often called monostable);
the example might be called monostable chaos. Alternatively, as discussed in more
detail by Olsen & Degn (1985), it can be that the slope of the map in the
neighbourhood of the fixed point is slightly below — 1, with most of the rest of the
map generating chaotic trajectories. The fixed point is then only weakly unstable,
so that it takes many iterations to leave its neighbourhood ; once the iterate has,
however, left this neighbourhood, it can abruptly become fully chaotic, only to get
caught in the quasistable neighbourhood of the fixed point again, sooner or later.
Such alternation between an almost stationary state and chaotic fluctuations,
repeated at apparently random intervals, is called intermittency. Intermittency
does not arise for any of the maps listed in table 1, nor have population biologists
given much thought to the phenomena. Its possible relevance in ecological con-
texts deserves more attention.

2.2. A speculation about the history of the subject

Given that simple equations, which arise naturally in many contexts, generate
such surprising dynamics, it is interesting to ask why it took so long for chaos to
move to centre stage the way it has over the past ten years or so. I think the
answer is partly that widespread appreciation of the significance of chaos had to
wait until it was found by people looking at systems simple enough for generalities
to be perceived, in contexts with practical applications in mind, and in a time
when computers made numerical studies easy.

Individually, the first two of these conditions were met long ago. Thus Poincaré
found strange attractors in his studies of planetary dynamics, and he appreciated
their significance, but these applications were sufficiently complicated that each
could appear su: gemeris. Many concluded that, in nonlinear systems, each
application is special, with no general messages. Even Lorenz’s (1963) beautiful
example of chaos in a simple system of three ordinary differential equations is
complicated enough to have resisted a fairly full analysis until relatively recently.
First-order difference equations, such as those in table 1, are indeed simple enough
for a fairly complete understanding of their range of behaviour to be obtained, and
several people (starting with Myrberg (1962) and Sharkovsky (1964)) did just
that. But these earlier investigators were primarily interested in the exquisite
mathematics, and do not seem to have had any messianic sense of the wider
implications of their work.
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In the 1940s and 1950s, several population biologists studied simple difference
equations as models for practical problems: Moran (1950) in a entomological
context; Ricker (1954) as a model for recruitment in fisheries. Their numerical
studies uncovered stable points, stable cycles and even chaos. These people,
however, were mainly interested in stable solutions, and they did not pursue the
chaotic dynamics they found. Perhaps they distrusted the chaotic trajectories, as
possible artifacts of their mechanical calculators.

In the studies of Moran, Ricker and other population biologists one had the
conjunction of simple systems being studied with practical problems in view, but
not my third conjectured ingredient of fast and reliable computers. All three
ingredients did come together in the early 1970s, in work motivated by simple
problems in population biology.

2.3. 4 ‘completely chaotic’ example

One particular example, which might have stimulated work on chaotic dynamics
at an earlier date had it been studied earlier, arises as a simple and natural model
for an insect population with discrete, non-overlapping generations that is
regulated by a lethal pathogen which spreads in epidemic fashion through each
generation, before reproduction. This system has recently been studied by May
(1985) (see also Rogers et al. 1986). If the population increases by a factor A from
generation to generation in the absence of the pathogen, the population in
generation ¢t+1, N,,,, is related to that in generation ¢ by

Ny = AN [1=I(N,)]. (2.4)

Here I(N,) is the fraction infected, and thus killed before reproducing. The
Kermack—McKendrick (1927) equation may be used to find the total fraction
infected when an epidemic spreads through a population of magnitude N,:

1—1I = exp(—IN,/Ny). (2.5)

Here N, is the threshold population size, which depends on the transmissibility
and virulence of the pathogen: if N, < N, the epidemic cannot spread, and
I=0; if N,> N, the epidemic can spread, so that I #0 and the effective
reproductive rate is below A. The one-dimensional map generated by this model
has no stable points, and no stable cycles. As illustrated in figure 1, the system is
‘completely chaotic’, with an invariant measure for all values of A (A > 1). For a
more detailed discussion, see May (1985) and Rogers et al. (1986).

The models for regulation of host insects by parasitoids, which are discussed
below in §2.6, were developed in the 1920s and 1930s. They are very similar in
spirit to (2.4) for regulation by a pathogen, except they do possess stable points
and/or simple cycles among their possible dynamical behaviour. I have previously
speculated that, had (2.4) been studied earlier, its completely chaotic dynamics
might have forced population biologists to acknowledge the existence of chaotic
dynamics much sooner.
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F1cUrE 1. Plot of population values (on a logarithmic scale, In (N/N,)) generated by iterating
(2.4) many times, for each of a sequence of A-values. The diagram gives an impression of
the probability distribution of population values generated by this purely deterministic
difference equation (after May 198s).

2.4. Higher-dimension systems of difference equations

The first-order difference equations listed in table 1 are metaphors for underlying
density-dependencies in mechanisms regulating natural populations. Such regu-
latory effects, however, will often themselves contain time lags. This leads us to
consider, as one of the simplest examples of such effects, the time-delayed logistic
equation (Maynard Smith 1968):

Ty = Amy(1—2,_,). (2.6)

Such an equation can be reformulated as a pair of first-order difference equations:

L1 = /\xt(l_yt):} @2.7)

Yir1 = %

In this formulation, the dynamics may be followed by plotting pairs of points
(x;, y,) in a two-dimensional phase plane; in the example (2.7), sensible trajectories
are restricted to lie within the unit square (negative values z, or y, being taken to
correspond to extinction). The system defined by (2.7) is a special case of more
general classes of prey—predator relationships.

Equations (2.6) and (2.7) have been studied by Pounder & Rogers (1980),
Aronson et al. (1982) and Rogers & Clarke (1981). Pounder & Rogers show the
trajectories of points z,, y, are attracted to an invariant curve, which has an
extremely complicated shape. Very briefly, this curve has infinitely many loops or
folds issuing from the origin ; the loops are successive images of the bottom arc of
the curve. Once A exceeds a critical value, the bottom arc of the curve can cross
the z-axis, enabling the system to ‘escape’ to negative values (corresponding,

2 Vol. 413. A
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biologically, to extinction). Interior loops of the invariant curve can also lead to
‘escaping’ trajectories, and extinction. The net result is that, for a range of A-
values, there are initial values which lead to extinction (possibly after very long
times), while others can lead to cycles of high period or to chaotic fluctuations; the
phase plane has a complicated filamentary structure, in which arbitrarily close
initial points can undergo qualitatively different fates (exhibiting what Yorke has
called ‘fractal basin boundaries’).

Rogers (1981) gives a review of this work, and Lauwerier (1986b) has presented
an exceedingly lucid analysis of a range of related two-dimensional systems,
including a generalized form of (2.7):

Tpyy = Az,[1—by,—(1 _b)xt],}
Yir1 = X

Not surprisingly, these more general forms can have an even richer spectrum of
dynamical behaviour than (2.7).

Such models lead into other two-dimensional systems, corresponding to inter-
acting prey and predator populations with discrete, non-overlapping generations.
One of the earliests such systems was propounded by the parasitologist Crofton
(1971) as a description of certain kinds of host—parasite interactions:

Tpyy = Ay[1 +yt]_k’ }
Y1 = Y [1+y 71

Preliminary analytical and numerical studies of this system by May (1979) reveal
a fixed point, which attracts initial points lying along ‘spiral arms’ around it in
phase space, with other initial points leading to high-order cycles or to apparent
extinction. The above-described analyses of the delayed logistic equation help
explain these earlier observations. Lauwerier’s (1986 b) review extends to a variety
of discrete prey—predator systems of this general kind, and he shows the complex
dynamics and extreme sensitivity to initial conditions that can ensue.

(2.8)

(2.9)

2.5. Host—parasitoid interactions

Roughly 10% of all metazoan species are insect parasitoids. These hymenop-
teran or dipteran species oviposit on or in their hosts (usually the egg, larval,
pupal or adult stage of an insect, often a lepidopteran). Mathematical studies of
the dynamics of such systems have gone hand-in-hand with empirical studies since
the early work of Nicholson and Bailey in the 1930s (Hassell 19778). This is, in part,
because each host produces either another host or a parasitoid in the next
generation, which means that relatively realistic models have a simple structure

Ty = Az f(y,), (2.10a)
Yorr = Ty~ Tpy /A (2.100)

Here x and y represent the population densities of hosts and parasitoids,
respectively. Each host either escapes parasitoid attack (with probability f, here
assumed to depend only on y) and then produces A progeny, or else is parasitized
to produce one parasitoid in the next generation. A variety of forms have been
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propounded, in the entomological literature, for the ‘search function’ f(y); some
of these are reviewed by Lauwerier (1986b), and to his list should be added the
‘negative binomial’ form f(y) = [1+ay/k]7*.

The dynamics of the system (2.10) will depend on A and on one or more other
parameters characterizing f(y). In general, there can be a stable fixed point, which
can undergo Hopf bifurcation to produce stable cycles. An interesting result which
is little known among biological workers in this area, yet which explains the results
of many numerical studies, is that the functional form of (2.10) generally
implies the stable periodic solutions have approximate periods of at least six
generations. This result is presented by Lauwerier (1986b), and illustrated with
numerical studies of several such systems (some of which have very complicated
dynamics, including, for example, a stable inner seven-point cycle and an unstable
outer cycle surrounding the unstable fixed point). Lauwerier’s derivation, how-
ever, contains a minor error; Appendix A sketches the analysis.

2.6. More general systems

More generally, models for single populations can involve many discrete, but
overlapping, age classes (see, for example, Levin & Goodyear 1980 ; Sparrow 1980;
Hassell & May 1987). These eventually shade into situations where populations
undergo continuous growth, but with time delays in recruitment or other pro-
cesses, thus obeying time-delayed differential equations. The standard equations
used by the International Whaling Commission to set quotas are of this kind, and
can exhibit a rich range of period-doublings and chaotic behaviour as time lags
lengthen and nonlinearities become steeper (although the parameters pertaining
to real whale population produce only stable points). For reviews of this material,
see May (1983) and Olsen & Degn (1985).

In short, simple and natural models for various kinds of biological populations
exhibit cyclic and chaotic dynamics. We now ask whether population parameters
will typically have values leading to such interesting dynamics.

3. CHAOS AND THE DYNAMICS OF REAL POPULATIONS
3.1. Analysis of laboratory populations

Single populations that are subject to density-dependent regulation, in a
deterministic and homogeneous environment, are likely to be found only in the
artificial setting of the laboratory. In this printed version of my lecture I shall not
recapitulate my recent review of a variety of such laboratory studies (May 1986),
several of which do indeed seem to show transitions from stable points to cycles,
and possibly to chaos, as factors affecting demographic parameters are altered.
Many of these laboratory investigations are, moreover, accompanied by explicit
mathematical models for the dynamical behaviour.

Such laboratory studies are seen by some ecologists as unsatisfactory, in at least
two respects. On the one hand, their artificiality may be argued to give them the
status of living computers (conforming to unnaturally simple regulatory mech-
anisms, of little relevance to the dynamics of natural populations). On the other
hand, for all the artificiality there remain many biological sources of noise, so that

2-2
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we do not in fact see period-doubling or other crisp transitions in dynamical
régimes, but instead see at best fuzzy changes from constancy to cycles of
increasing amplitude and/or irregularity, as biological parameters are varied.

3.2. Natural populations : understanding the dynamics

Interactions with other species mean that natural populations are usually
governed by higher-order systems of equations. These complications are, of course,
compounded by environmental noise and spatial heterogeneity. Thus, although
broad patterns may be understandable (four-year cycles in many populations of
small mammals in extremely seasonal environments may be an example), most
work on the dynamics of natural populations is concerned just with trying to tease
out density-dependent signals from a confusing background of density-indepen-
dent noise, rather than with nonlinear details of the density-dependent signal as
such.

The population dynamics of viral, bacterial, protozoan and helminth infections
constitute one class of possible exceptions to this gloomy view. For one thing, the
transmission of such organisms among hosts may be described more simply than
is the case for the complex numerical and functional responses characterizing the
population biology of most vertebrate prey—predator associations. For another,
public health records afford long runs of data. Recent work on the nonlinear
dynamics of host-pathogen associations seeks to explain the persistent and non-
seasonal oscillations in the reported incidence of many childhood infections of
humans in developed countries (measles, pertussis, rubella), and to predict tem-
poral changes in incidence of infection following the implementation of specific
vaccination programmes. These confrontations between nonlinear models for the
dynamics, and population data, are also reviewed in my Croonian Lecture (May
1986). Period-doubling and chaos play a part in much of this work on non-seasonal
periodicities (see, for example, Aron & Schwartz 1984 ; Grossman 1980).

3.3. Natural populations: phenomenological analysis

A very different approach to the analysis of population data has been pioneered
by Schaffer & Kot (1985, 1986). The approach uses methods developed for physical
problems by Packard ef al. (1980), Takens (1981), and others, for situations where
only one variable can be measured in a system possessing many independent
variables. If some multidimensional attractor underlies the observed time series,
it may be reconstructed (without any understanding of the fundamental mech-
anism that generates it) by choosing some fixed time lag, 7', and plotting values
of the variables x(t), z(t +7T'), (¢ +27T'), ..., z(t+[m—1]T) in m-dimensional space;
the value chosen for 7' is not critical. The value of m is selected so that increasing
its value by unity does not apparently result in any additional structure.

Schaffer & Kot (1985, 1986) have applied these techniques to the recorded
numbers of cases of chickenpox, mumps and measles per month, N(¢), in New York
and Baltimore before mass vaccination. They construct three-dimensional phase
plots of N(t), N(t+1T'), N(t+2T), with T fixed around two to three months. For all
three-phase plots, Poincaré cross sections suggest the flows are indeed confined to
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a nearly two-dimensional conical surface, corresponding to some nearly one-
dimensional map. Schaffer & Kot compute the Lyapunov exponents for these
phenomenologically constructed one-dimensional maps, and find them all to be
positive. Olsen & Degn (1985) review this work, and give a parallel but independent
analysis of measles data from Copenhagen, which yields a one-dimensional
humped map almost identical to those found for measles by Schaffer & Kot.
Schaffer (1984) has also given a similar analysis of the Canadian data on apparent
cycles in lynx abundance, arguing that this system also is chaotic and governed
by a nearly one-dimensional map.

This phenomenological approach is clearly different in spirit from conventional
approaches which seek to understand dynamical behaviour in terms of specific
models based on underlying biological mechanisms. The approach holds the
promise of providing new insights; its main problem is that it needs longer runs
of data than are commonly available to population biologists.

4. NONLINEAR EFFECTS AND THE ANALYSIS OF POPULATION DATA

A growing amount of literature deals with the interplay between environmental
noise and the intrinsic dynamics of nonlinear systems of the kinds discussed above.
From a population biologist’s point of view, one problem is that environmental
fluctuations in reality affect individual organisms, and not population-level par-
ameters as such. A fundamental analysis of how to extract density-dependent
signals from environmental noise in population data therefore requires that we
first understand how parameters characterizing the dynamics of a population
derive from the behaviour of individuals.

Hassell (Hassell 1986 ; Hassell & May 1985) has recently explored these issues,
both in illustrative but abstract models, and in relation to explicit data for
populations of whitefly, Aleurotrachelus jelinekii, on viburnum bushes in England
(Hassell et al. 1987). These theoretical and empirical studies exemplify the con-
junction of three factors, which will influence the dynamics of most natural
populations: in each generation, the overall population is distributed (often in a
very non-uniform way) among many different patches; in each patch, density-
dependent mechanisms affect the population dynamics (differently at different
densities in different patches); and environmental fluctuations influence individual
behaviour and thence population dynamics (again, possibly differently in different
patches).

To begin, environmental fluctuations are ignored, and specific assumptions are
made (or deduced from detailed observations) about the statistical distribution of
the total population of reproductive adults among m distinct patches. Suppose
next that each adult produces F offspring, and that the chance of each offspring
surviving to the prereproductive dispersal stage, from a patch with 7 adults and
thus ¢F offspring, is characterized by some density-dependent survival function
s(iF'). The total population of reproductive adults in the next generation, N,,,, is
given by

Nypy = m{S pli; N /m) sGF) iF}. (4.1)
i



38 R. M. May

In this way we arrive at a first-order difference equation relating N,,, to N,, but
now the parameters are those characterizing the distribution p(-) and survival s(*)
at the patch and individual level. Note that regulatory effects are likely to be a
combination of inter- and intragenerational effects, with some regulation occurring
within each generation owing to density dependence acting differently at the
different densities in various patches, and other regulatory effects deriving from
between-generation differences in average population densities.

Such mathematical models can be used to generate pseudo-data (which can be
noisy if the dynamics are chaotic), against which to test standard techniques of
data analysis. Such studies show that conventional k-factor analysis, which in this
case essentially plots changes in the total egg-to-adult mortality (the k-value on the
y-axis) against initial adult density (plotted logarithmically on the x-axis), does
reveal the density-dependent regulatory effects deriving from nonlinearities in the
survival function s(-). This is true even though the analysis involves only average
densities in successive generations, whereas much of the regulation occurs among
patches within each generation.

The picture changes, however, when stochastic fluctuations are incorporated in
the clutch size F, or in the parameters characterizing the dispersal and survivor-
ship functions p(-) and s(-), respectively. Analysis of this theoretically generated
pseudo-data by conventional k-factor analysis, applied to averaged densities in
successive generations, in some cases still does reveal the underlying density-
dependent effects, but in other cases does not. Whether or not the density-
dependence that is actually present — though often predominantly acting within
each generation — is revealed by such analysis depends on the magnitude of the
stochastic fluctuations thus introduced (which is understandable), but also upon
which parameter has been made noisy. May (1986) gives a much more explicit
review of this recent work, complete with application to a model based on the
whitefly-viburnum data.

The essential point is that when a population is distributed non-uniformly
among many patches, with patches of different densities capable of exhibiting
dynamical patterns ranging from stable points, through stable cycles, to chaos,
the disentangling of density-dependent regulatory effects from superimposed
environmental noise can be very difficult. The task may, indeed, often not be
possible using conventional methods applied to overall average densities in
successive generations. These questions go to the heart of the subject, calling for
a reappraisal of conventional methods of gathering and analysing data.

5. POPULATION GENETICS AND CHAOTIC POLYMORPHISMS

However complex the dynamies in simple population models, things can get
messier when population genetics is combined with population biology in models
where fitness functions are frequency- or density-dependent.

The simplest such models deal with a single diallelic locus, with p, and g, being
the relative proportions (or ‘frequencies’, p+¢=1) of the two alleles A and a,
respectively, in generation ¢. In a diploid population with random mating, the
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frequency of A in generation ¢+ 1, p,,,, is related to that in generation ¢ by a first-

order difference equation

P — (ptZWAA+pthWAa) . (5.1)
T OIWaa 20 W aat G W aa)

The quantities W; represent the fitnesses, or relative reproductive successes, of the
three genotypes. If these fitnesses themselves depend on the gene frequency p,, as
can happen in a variety of biologically reasonable situations, we can have a highly
nonlinear map, in the unit square, relating p,,, to p,.

In particular, May & Anderson (1983) have studied aspects of the coevolution
of host-pathogen associations, using fitness functions derived from the kind of
epidemiological considerations sketched in §2.3. Specifically, they assume in the
simplest case that each of the three genotypes is susceptible to a particular
pathogen (to which the other two are resistant), which spreads in epidemic fashion
as described in §2.3. The fitness of genotype ij (ij = AA, Aa, aa) in generation ¢ is

then
Wiy = Ay[1 =yl (NVyy)]. (5.2)

Here A,, is the fitness, or relative productive success, of genotype AA in
the absence of disease; y,, is the proportion of those infected who die; and
N, = N,p}, with N, the total density of the population in generation ¢. Similar
definitions apply to the corresponding quantities for the genotypes Aa and aa. In
each case, the Kermack-McKendrick (1927) relation gives the implicit expression
(2.5) for I¢+):

1—1I;; =exp[—1I;;Ny;/Ny]. (5.3)

Here, as before, N is the threshold density for transmission of the infection.

Two cases can now be distinguished.

If overall population density in each generation is held constant by other
ecological constraints, N, = K, the proportion of each of the three genotypes to be
infected — and thence, via (5.2), the fitness functions W;; — depend only on the gene
frequency, p,. For such frequency-dependent (but not density-dependent) selec-
tion, gene frequencies in successive generations obey (5.1) with frequency-
dependent W,; from (5.2) and (5.3). The map has obvious fixed points at (0,0) and
(1,1), but in general also has an interior fixed point by virtue of the propensity of
P, to increase from low values and decrease from high values (because disease
spreads less effectively among rare genotypes and more effectively among
common ones). The result can be a stable polymorphism, but for plausible values
of the epidemiological parameters there can alternatively be cyclic or chaotic
fluctuations in gene frequency.

If overall population density is itself regulated by the different diseases afflicting
the three different genotypes, then both total population density and gene fre-
quency can fluctuate cyclically or chaotically. Indeed, if all three diseases are
lethal (y;; =1 in all cases), it follows from §2.3 that the total population, and
consequently the relative proportions of the genes A and a, have chaotic dynamics.
Figure 2 illustrates such chaotic fluctuations in gene frequencies.
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FiGure 2. Illustrating the highly chaotic dynamical behaviour of the gene frequency p that can
arise once the selective forces exerted by the pathogens are both frequency- and density-
dependent. The figure plots successive iterates of p, as generated by the first-order difference
equation (4.1) with (4.2) and (4.3) defining the fitness functions. After May & Anderson
(1983), where details are given.

The above is a very brief summary of results presented in detail in May &
Anderson (1983). The results have intrinsic mathematical interest, but their
greater significance is that — like the results outlined in the previous section — they
suggest we should think again about empirical aspects of biological studies. Given
that many polymorphisms are thought to be maintained by frequency- or density-
dependent mechanisms, it must be recognized that such maintenance is not
necessarily at constant proportions of A and a; these nonlinear mechanisms can
readily generate cyclic or chaotic fluctuations in gene frequencies. Whether such
fluctuations are observed in natural populations is not known, because most
studies have not reckoned with the possibility that gene frequencies may be
continually changing, driven by their own chaotic dynamics.

6. DiscussIioN

In part, this review has aimed to present a range of models which provide
deliberately oversimplified descriptions of the dynamics of natural populations of
plants and animals. These simple, yet naturally derived, models can exhibit an
astonishing array of dynamical behaviour.

I have argued that such behaviour does give qualitative insights into many
population phenomena in the natural world, and that in some cases (dynamics of
infectious diseases, for example) reasonably detailed understanding of nonlinear
dynamical effects is emerging. But I doubt that phenomena like period-doubling or
inverse Hopf bifurcations will be seen even in the cleanest population data, as they
arguably are in physiological or biochemical contexts.

Recognition that density-dependent mechanisms can produce cyclic and chaotic
behaviour in natural populations does, however, have important implications for
the way certain kinds of data are analysed by ecologists. As clearly illustrated by
applying conventional techniques of analysis to pseudo-data generated by models
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in which nonlinear dynamics, spatial heterogeneity, and environmental stoch-
asticity roil together, the claim that a given set of data shows no evidence
for density-dependence may often be a statement about the method of analysis, or
about how the data were collected, and not about the biology of the system.
Similarly, simple models suggest that cyclic or chaotic fluctuations in gene fre-
quency can easily be maintained by selective forces whose magnitudes depend on
gene frequencies or population densities. Again, there is need for a fresh look at
gene frequencies in field populations, in the light of these results.

This work was supported in part by the National Science Foundation, under
grant DMS-8604718.

APPENDIX A

This appendix establishes the result that host—parasitoid systems, as described
by (2.10), are unlikely to have stable periodic orbits of order below 6.

Equation (2.10) has a fixed point at y = y*, x = 2* = y*A/(A—1), where y* is
given by-Af(y*) = 1. A linear stability analysis of this fixed point leads to a
quadratic equation for the stability-determining eigenvalues o :

ot—o(l+a)+Aa =0. (A1)
Here I have, for convenience, defined
o = —a*(df/dy)* (A2)

As f should be monotonically decreasing for increasing y, we should have o > 0.
The fixed point z*, y*, will be unstable as o crosses the unit circle. At this Hopf
bifurcation, we write o = e!’, and the imaginary part of (A 1) then gives

sin (20)— (1 +a)sin 6 = 0. (A 3)

That is, at the Hopf bifurcation from a stable point to a stable cycle, the phase
angle is given by
cosf = }(1+a). (A 4)

At the bifurcation, the parameters « and A are related by Aa = 1 (which can be
obtained from the real part of (A1) with o =¢€' or directly from the
Schur—Cohn criterion). Using this to express a in terms of the more biologically
familiar A in (A 4), we finally arrive at

cosf =L{1+1/A). (A 5)

As A increases from around unity to very large values, the phase angle 6
increases from 0° to 60°. We can thus obtain a six-point cycle in the limit A - o,
but more generally a cycle of order roughly seven is the lowest likely to be found.
This accords with several numerical studies presented by Olsen & Degn (1985),
and with the earlier numerical work of Beddington et al. (1975). (Olsen & Degn’s
(1985) discussion has a sign wrong, to get (1—1/A) in (A 5); this leads them to
conclude the phase angle 0 lies between 60° and 90°, which would give cycles of
approximate period between 4 and 6, rather than the correct 6 or more.)
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Discussion

D. M. G. WisHART (University of Birmingham, U.K.). One of the most frequently
analysed sets of data is the lynx—hare set. Is Professor May suggesting that we
should, perhaps, declare a moratorium on this activity ?

R. M. May. The lynx-hare data, compiled for the trading records of the Hudson
Bay Trading Co., constitute one of the few long-term series available to population



